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Theory of Cerenkov and transition radiation from layered structures
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A scattering theoretical approach is used to describe the generation of both transitioerankio® radiation
due to the passage of fast electrons through layered, in general absorptive, dielectrics. It leads to a considerable
improvement over the coherent summation method usually employed. Reflection of the produced radiation
from the layer interfaces is now properly taken into account and absorption of radiation, if present, is auto-
matically taken care of. The usual restriction that the energy of the produced photons must be small relative to
the initial electron energy is lifted. In contrast to existing theories the productioresdn®ov radiation, if it
takes place, is included as well. Our expressions for radiation production feature the eigenmodes of the
Helmholtz equation for the dielectric and we discuss how the latter can be obtained by means of a transfer
matrix formalism. A numerical evaluation shows that under the appropriate conditions our results are in
agreement with those from the coherent summation formalism. Finally, we present numerical results that give
an impression of the relative yields for transition aneréhkov radiation.

PACS numbgs): 41.60.Bq, 34.50.Dy, 34.50.Bw, 42.50.Ct

[. INTRODUCTION layers with large differences in are required for efficient
radiation production. In particular, in Rdf2], where an ex-
tensive list of earlier references is given as well, Kaplan
Fast electrons moving through a dielectric medium caret al. explore theoretically the use of the system of interfaces
produce radiation through a number of different mechapresent in a multilayer in combination with MeV electrons
nisms. Well known is the &enkov radiatiofCR), which is  for TR production. Here absorptive dielectrics at frequencies
produced throughout the medium provided the electron venear absorption edges for inner shell excitation are interest-
locity exceeds the phase velocity of the radiation inside theng candidates, since they lead to extremely large contrasts in
medium. A second type of radiation is transition radiationg(w) and correspondingly increased yields. These authors
(TR). Here the electron energy can be arbitrary but the mealso show that around such absorption edges direct BS can
dium must be spatially inhomogeneous, i.e., the electric pehe neglected. The above structures are also interesting for
meability e(x) must depend ox. This leads to a variable CR production, since it is precisely near the absorption edges
charge density where the @renkov radiation condition can be met. The idea
of using dispersive dielectrics for soft x-ray production was
() =d EQ)=[de " ()]-D(x), (1.9 considgred Féarlier by Bazylest al. [3] in cgnﬁection with
CR.
causing the electron to accelerate and decelerate with the
accompanying production of radiation. Thus it can be viewed
as a type of bremsstrahluri8S) associated with the polar-
ization properties of the dielectric. At a sharp interface, TR The usual theoretical setUg] for a description of TR
over a wide frequency range can be generated. starts off from the radiation produced at a single interface.
Third, direct BS, due to collisions of the electron with the The total radiation emanating from a multilayer is then ob-
atoms or ions constituting the dielectric can also occur. Onained by coherently summing the contributions from the in-
the other hand, such collisions deflect the electron and theglividual interfaces. In addition, it is common practice to as-
act as a loss mechanism for TR and CR production. This isume that the energy of the produced photgpg is small
the case in particular in a periodic layered medium with nor—relative to the initial electron energg,,. This allows the
mally incident electrons, where the periodicity is used toelectron velocity to be taken as constant, in which case the
enhance TR production at a given frequengcy radiation produced is obtained from Maxwell's equations
Throughout the years there has been some interest in theith a prescribed external current density. This makes sense
possibility of using TR and CR generated in this way as &n technological applications, where the use of MeV elec-
simple source for x-ray radiation. For recent experimentatrons is considered for the generation of photons with ener-
results, sed1]. Since the TR produced at an interface isgies of a few hundred eV or lower. If2] further amend-
proportional to (Ae)?, Ae being the jump ine across it, ments are made to include the effects of photon absorption in
an absorptive dielectric and the scattering of electrons from
the individual atoms or ions constituting the material
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A less elegant feature of this approach is the apparent need ioelastic processes are covered as well. However iif
treat the outer layers of a stack separately. An importankE,,, the result of Sec. Il is recovered.

drawback inherent to the method is that CR, being a bulk The final step involves the evaluation of the HE's. We
effect, is not simultaneously taken into account. In additiontake this up in Sec. IV, where we start by obtaining

systems with gradually changingcan only be treated per- Lippmann-Schwinger and eigenvalue equations. The transla-
turbatively. tion invariance in directions parallel to the interfaces leads to

the usual decomposition into two independent problems for
the two different polarizations. For each of these a transfer
matrix formalism can then be set up. In the special case of a
A basic flaw of the usual theory is that CR is not inClUded.|ayered structure with piecewise constaiik), the transfer
This makes it difficult to make a choice between TR and CRmatrix simply becomes a product of individual matrices,
as the basic process for x-ray production. However, the deeach pertaining to a specific layer. This fixes the HE’s in
scription of TR and CR can be unified by realizing that wecoordinate representation and a numerical Fourier transfor-
are essentially dealing with a scattering phenomeran, mation can then be executed to obtain results for specific
+vacuum-e_+ photons. As is known from quantum elec- cases. In Sec. V, the discussion section, we give a few ex-
trodynamics(QED), such processes lead to expressions deamples and comparisons with results obtained through the
pending on the field modes. In vacuum QED the latter aré&oherent summation method. Under the appropriate condi-
simple plane waves but in macroscopic media they becom8ons the agreement is reasonable.
the eigenmodegHE’s) of the Helmholtz operator, the latter
now featuring a nontriviale (x). Much activity is taking D. Some notions from scattering theory

place in connection with the decay of excited atoms embed-  ag said, we shall make use of scattering theoretical con-
ded in an optical material such as a photonic crystal, étqm cepts, in particular of the Mer or wave operator§). . The
+vacuum-atomt-photon. There the decay of the atom is |5tter appear in a natural way if we note that in a scattering
described in terms of the so-called local density of statesgjtation[ H=H,+ V is the full HamiltonianH, the free one,

which in turn can be expressed in terms of the HE®e[S] 41 y(t) the state in the Schdinger caskthe actual motion
and references quoted therés far as we are aware, the #(t)=exp(iHt)$(0) approaches the free motion exp

only paper in which the HE’s make their appearance in CONT_iH,t) @, With @ an appropriate state vector, &s + =, so
nection with TR is one by Glauber and Lewensté&],

where the quantization of a linear nonabsorptive dielectric is Q. (0)= lim expliHt)exp(—iHyt) ¢ 1.2
discussed. As an application, the generation of TR is consid- t—*oo

ered for the case of a quantized electromagnetic field coupled

to a classical current density. After specializing to the singleexist. ThenS=Q%* () _ is the scattering operator for the pro-
interface case the relevant HE’s are determined and the stavess considered. We shall also make use of the feature that if
dard Ginzburg-Frank formul§4] for a single interface is (Pgo) is an eigenvector ofl, at the eigenvalue\, then ¢,

C. Present approach

recovered under the appropriate conditions. :Qi(pgo) is an eigenvector ofl at the same eigenvalue,
Below we present a general approach toward TR and CR
in the same spirit. We make use of results recently obtained HO§D§\O):)\¢§\O):H€D?\:)\¢)\' (1.3

by one of us(Tip [7]), where both classical and quantized
linear absorptive dielectrics are considengdferred to as
LAD in the following). We consider two cases involving
layered dielectrics with finite width.

In Sec. Il we study a classical absorptive dielectric with a
given external current density, ie., t_he familiar situation Wlthmagnetic scattering can be found[if| and[11].
Epn<E . However, our medium is a general absorptive Concerning notation we note the following: The vacuum
one, and, since we avoid the coherent summation procedure' e d i biliti d .t ® d
CR is also included and our results apply as well to media ccc and magnetic permeabiiities are denote Han

with gradually varyinge(x). The final result involves the Ko respticﬂlzvely. Thu_s the speed of light in vacuumegs
momentum space versidfourier transformof the HE’s. =(eoko) " The region of space where the medium is non-

We then turn to the fully quantized situation in Sec. Ill. absorptive(conservativgis indicated as\,,, whereas the

Since usually electron beams with high energy are consi0"—ibsorptive region is denoted ad, . When considering lay-

ered, we describe the electron through the relativistic "E‘:chro(':'red media we shall always take the interfaces parallel to the

dinger equation(spin effects can safely be discarded, theX1-X2 plane,g will be the unit vector in theX, d|rec_t|on,
energies involved in spin-flip and similar processes bein nda® refe.rs tq the component of the vectoperpendicular
extremely small relative t&.; andE,y). Since multiphoton 0 the X, direction.

production is negligible as compared to single photon gen-

eration, a calculation to leading order in the coupliifige Il. RADIATION PRODUCED BY A GIVEN CURRENT
structure constant suffices. This case was already considered
in LAD. Here we simply give the result obtained there. It is
interesting to note that the final result does not invalyet Our starting point is the set of Maxwell's equations for a
is essentially classical. In addition, no assumption about thénear, in general absorptive, dielectric in the presence of an
relative magnitudes oE. and Epy, is required, so highly external current density(x,t),

There exists a vast, mainly mathematical-physical literature
about the existence and completengss, the unitarity ofS)

of wave operators, in particular for the ScHiger case.
Some useful references di@-10]. Applications to electro-

A. Maxwell’'s equations
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FD(X,t)=a, X H(x,t) = I(x,t), solution of a set of coupled first order equations and is with-

(2.2) out time convolution terms. Here we briefly recapitulate the
procedure. We note that in generg{x,0)=0 and that
x' (x,t)=0dx(x,t), extended to negativé according to
x' (X,—t)=x'(xt), has a non-negative Fourier transform,
so

d:B(x,t)= =, XE(X,t), dyB(X,ty)=0.

We assume that magnetization is absentBsqLLng, and

e1(X)E(X,t)=eo(1+ xstad E(X,1), Xe Mpa to
X’(X,t)=J7 dwexp—iot)o(X,0)?, o(X,0)=0.

D(x,t)= t
oat) €g E(x,t)+J dsy(x,t—s)E(x,s)|, xeM,.
o (2.9
(2.2
Introducing Eq.(2.4) into Eq. (2.1 h
Heret, is some initial time, taken to be-« later on, and nroducing Eq.(2.4) into Eq. (2.1) we have
x(x.t) is the electric susceptibility. Since the latter vanishes ;s (x)E(x,t) =9, X ug *B(X,t)
outside M, we can write, setting,(X) =¢q for xe M, so
= t
Sl(X)X(Xat) SOX(Xat)a _sof dSXI(X,t_S)E(X,S)_J(X,t).
t
. 0
D(x,t)=gl(x)(E(x,t)+f dsy(x,t—s)E(x,s) |. (2.6
to

(2.3 Then, withF(x,t) =e,(X)*E(x,1), F3(x,t)=puo Y?B(x,t),

, . _and with two new auxiliary real vector fields,(x,w,t) and
We recall that the nonabsorptive or static situation follows 'fF4(X,a),t), which vanish for t=ty, Fy(X o,tp)

the kernely(t) is decaying rapidly. Then =F4(X,,t5) =0

_ _ ~12 —172
D(x,t)=so(E(x,t)+fot toolsX(x,s)E(x,t—s:)) P26 Zea(0) 700 o TFS(X 1)

+ J doo(X,w)F4(X,w,t)— 81(X)7l/2J(X,t),

t—to
1+ fo dsX(x,s)> E(x,t)

%80
IF (X, 0,t) = wF4(X, w,1), 2.7

~gp 1+ fowdSX(X,S)> E(X,t) ﬂth(X,t): _,(Lallzaxx81(X)_1/2F1(X,t),

=eol 1+ xstal X) JE(X,1). (2.4 F (%, 0,1)=— wFy(X,0,t) — o(X,0)F(X,1).

In LAD a general approach toward linear absorptive dielecFrom this set Maxwell's equations are retrieved by express-
trics was presented. There, by means of introducing two auxing the auxiliary field$=, andF, in terms of the electromag-
iliary fields, it was shown that energy conservation can benetic ones and substituting them in the remaining equations.
restored for the combined set of fields, and that this set is then compact notation, with

Fa(t) e V2() 0 0 (e1e) Y2, f doo(w) -
Fo(t 0

Fo=| 2V s-  N=| O 0 0 w ,
F(0 0 ~0X(e1m0) Y2 0 0 0
Fa(®) 0 —o(w) -w 0 0

(2.9

we have
&= %<F|F>=%f dx[F1(x)2+F3(x)?]

aF(1)=NF(t)—G(t)=—iKF(t)—G(t). (2.9 +f dxf do[Fy(x.0)2+ Fa(x.0)?]. (2.10
Ma

Noting that the auxiliary fields vanish outside the absorptive
region M,, the conserved energy is now If we suppose that initially, at=t,, the charged particles
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producing the current density have not yet reached the mesentered in the origin and, in the layered case, with axis not

dium, all initial fields vanish and Ed2.8) has the solution

F(t)=— f:dsexp[— iK(t—s)]G(s)
0

tg——

— —ﬁ dsexd —iK(t—s)]G(s)

:_fmdsexp[—iK(S)]G(t—S).
0
(2.19

B. Radiated energy in terms of wave operators

Let K, be the generator for the free time evolution, i.e.,
e=¢gg and y=0 (note that electromagnetic and auxiliary
fields are not coupled bi{y). In case the dielectric is finite
or a layered structure with finite width, we can introduce the

Mdller or wave operator

Q. =lim exp(iKt)exp —iKqt),

t—oo

(2.12

which is well defined when acting upon statewith trans-

verse electromagnetic components, in particular those for
which the auxiliary components, and F, vanish and the

electromagnetic ones are plane wave eigenstatig.d¥lore

information about the use of wave operators in an electrody-

namical context can be found in LAD anmil1]. Now

expliKpt)F(t) = —expiKqt)exp(iKt)

t
Xf, dsexpiKs)G(s)

t—oo t
~ =07 J dsexp(iKs)G(s)

t—o o
~ —ij dsexp(iKs)G(s)

~ — JOC dseX[Xi KOS)Q’;G(S),

(2.13
o)
t—oo o
F(t) ~ —exp(—iKOt)f dsexp(iKys)Q? G(s)
=—exp —iKt)M, (2.14
where
M=fw dsexp(iKgs) Q% G(s). (2.15

parallel to the dielectric interfaces. In order to have no over-
lap with the dielectric, the cone is truncated for small
Then, since the auxiliary fields vanish outside absorbing re-
gions, the total energy containedd@rcoincides with its elec-
tromagnetic part. Let 4(f) be the characteristic function for
the setA, i.e., x4(f)=1 for f € 4 and vanishes otherwise.
Then

(2.19

wheree is the axis of the coney the cosine of its aperture,
andb the truncation parameter. As discussed in LAD,

Xc(X)=0(e-g,—a)f(x—Db),

lim exp(i Kot)Xc(X) Pemexp( —i Kot)

t—o
=[0(e-g,—a)P,+0(—ee—a)P_|Pepy,
(2.17
where6(.) is the Heaviside step functiop=—id,, P. are
the projectors upon the eigenspaceXgfwith positive and

negative eigenvalues, respectively, d@ng, is the projector
upon the electromagnetic components~ofNow

Ec(t) = 3(F(1)| xe(X)Per] F(1))

t—oo

~ 3(M[exp(iKot) xc(X) PemeXp —iKot) M)

t—oo

— ~3(M|[6(e-g,—a)P,

+6(—e-e—a)P_]PeM)=¢. (2.18
Let C be the conjugation operator,
(CHO=F(x). (219
Then, sinceN=—iK and Ny=—iK, are real operators,

CNC=N, CNyC=N, so Q, is invariant, CQ),C=Q, .
Also CP_C=P, andCpC=—p. SinceG is real, CG=G
and it follows that the first and second terms in E4j18 are
equal, so

Ee=(M|0(e-g,—a)P_ Pey|M). (2.20
Next we note that the eigenvectomé?fy of Ko,
Kowigh,= acokw(d), , (2.2

for which the auxiliary components vanish, are given by

nj
0 exp(iak-x)
(0) = 3 i _
Wi o (X)= axn, Py keR3 j=12, a==+1,
0

(2.22

Suppose the origin of our coordinate system is somewhere
inside the dielectric. We calculate the amount of electromagwheree,=k/k andn; andn, are mutually orthonormal. The

netic energy&, emerging in a con€ in coordinate space,

wi)’s are normalized according to
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e1(Xg) YAy () =27 Y2explik® - x5 ) @i (X3),
WO WD, )= deW(k?L 0w, (x) 1(X3 1 ki (X3 .29

= 8(k=K") 8} Sneer - (2.23  (the factor 2 *?is introduced to ease a comparison with the
quantum case, considered bejpwherel denotes the com-
SinceKQ , =, Ky, the corresponding eigenstateskofire  ponent of a vector orthogonal to thé axis. Then, with

Wijo= QW) KWy, = aCokW,, . (2.24 J(x,t)=evs(x—vt), (2.30

Unless the medium is conservative, they have nonvanishingith e the electron charge andits velocity,
auxiliary components. We note that for finite media

e .
lim Wi o(x) = wi)(x)=~0, (2.25 fkj:\/—z_vsf dxgexpli (k™ -x"—Kco)X3/v3lej(Xs) - V,

e (2.3)

but the situation for layered media is different. We express
(0) 'S and
P Pemin terms of thew,;’, 's:

2 2

- (kS xt — . .
Pen=S [kl @20 g J et x—keavategra v
- . me?
so, omitting the subscript from now on, :_2|<(ki’Xi_kCO)V/03|¢’kj>|2 (2.32
U3
(0)y ¢\ (0)
Jdka(e & a)<M|w P Wig IM) in this case.
_2 Jdke(e 6 a)<M|W(°)><W(°)|M> IIl. QUANTUM ELECTRODYNAMICAL APPROACH

An alternative to the formalism presented in the preceding
_2 fdk(M|w(°)>(w(°)|M) 2 fdk|fkj| section is to consider the radiation production process as a
scattering phenomenon. Although this can be done on a
purely classical basis, the corresponding quantum theory is
=> fdk (G (2.27 ~ much better developed and hence we shall use the latter.
j Thus the incoming state as» —« is the product of an elec-
tron state and the vacuum state for the electromagnetic field,
where ¢,;dk is the radiated energy with wave vector in
(k,k+dk) and polarizatiorj and Yin= PeI® @pacs (3.0

:<M|W(k(j))> and the quantity we are interested in is the equivaleré.of
above. Since multiphoton production is negligible relative to
the single photon process, we make the restriction to the
latter. This simplifies the formalism dramatically since it al-
lows a first order perturbation calculation as discussed in
LAD. Here we simply give the result. However, the proce-
dure followed in LAD has a minor flaw, which is easily
corrected. The point is that there we calculated the probabil-
. ity of finding a photon in the con€ in coordinate space.
fﬁxdtexp(—|kc0t)<G(s)|wkj> 'It}r/]is does n%t mF;ke sense since the electrodynamicF:) parts of
the vectors in the first Fock layer are transverse gp)
* . _ acting upon the latter leads to longitudinal contributions as
f,xdtf dx expl —ikcot)e1(x) g (X)I(x.1), well.qrheIO situation is easily remedigd by calculating instead

the expected energy i@ i.e., the expectation value, as time

f dt(exp(i Kos) % G(1) | w(®)

f:dt<G(t)|Q+exp( —iKos)W())

where wyy; is the first (three-dimensionalcomponent of

w; . Thus we have expressed the emitted radiation in terms €C=%f dxx(X)[E(x)?+B(x)?], (3.2

of the eigenvectors df. Note that all radiatiorti.e., both TR

and CR produced byJ(x,t) is included. whereE and B are now field operators. Here the auxiliary

Next we specialize to the layered case, where the interfields do not appear, since, as in the classical case, they van-
faces between the layers are parallel to ¥eX, plane. ish outside the absorptive region. The result obtained in LAD
Thus we consider the situation that(x)=e,(x3) and s still correct, except that here we also present(thaor)
x(x,t) = x(x3,t). The translation invariance in thg andX,  contribution from processes where the electron is reflected
directions then gives from the medium, a situation that is not included in the clas-
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sical approach where the electron velocity is fixed. Thus we (c) Although the above expressions were obtained
have for a layered medium with finite thickness, through a quantum-electrodynamical calculation, they do not
depend orfi and hence are in essence classical.
. Let us now consider the situation we encountered earlier,
lim (£D(t))=2>, fdkezkj, Ei= i+ &, e
t—oo Je T

(33 Epn<Ein~Eou. (3.6
where the superscriffl) indicates that the contribution from
the first Fock layer(single photon productionis taken,
whereas the subscripts andref refer to the cases where
the electron is transmitted and reflected, respectively. Equa- Koz— Kqg= (Kpgt+ Kqg) 1
tion (3.3 is obtained in the case where the initial electron

It follows from the conservation laws that

K3+ 2k7 -k*

state is strongly peaked around the momenkymk,5>0, in mey 2142
the limit that it approaches a plane wave while keeping it —2k| ki+ T) } ]
normalized to unity(this approach would not work for a
finite medium since there the overlap of the electron wave ki.ki_k[kiju(mco/ﬁ)Z]l/Z
function and medium would tend to zéroThus Eq.(3.3 ~ " : (3.7
gives the energy per electron. For its two components we 3
have @;; is the component of; alongXs) Using
t
& fikj=p;=[1—(v;/c)?] Y2mv;, (3.9
& , 1 2 and setting;=Vv,
= f dxzexd —i(Kiz—Kaz)X3]¢j(X3)- 5(K1+Ky)
2k13k23 2 -1/L
5 1 ) k23_ kl3%l)3 (k Vl_kCO), (39)
e
= k_13k23<§(k23_ ki) (ki +kz) ¢kj> ) this leads to
2
er_ € : 1 @"-%e— f dxzexdi(k" - v-—Kkcg)X3/vg]eyi(X3) -V i
&j ~ 2K Ko dxzexp —i(kyst kag)Xalexj(Xa) - 5(ky N op2 3 0773773V kA3 ’
2 (3.10
+k; — koa) which is Eq.(2.32. Sincekys+ ki3> ko3 ki3, the exponen-
tial in c%rk?f is oscillating much faster than the onedy; , so
2] 1 2 ef<ey.
= Kidko < _§(k13+ kag) (Ky+ ks — kzses)‘ ¢kj>
(3.9 IV. MODE FUNCTIONS FOR A LAYERED MEDIUM

. . . ) A. The Lippmann-Schwinger and eigenvalue equations
wherek, with k,3>0 is determined by the relations PP 9 9 a

For a further evaluation of the expressio(%32 and
o [, (meg\F M T, (meg| 22 (3.4 we need the eigenmodmj=ﬂ+w(k?) Wherewf(?) is
ki=kz k=, |ki+|—— = k2+(T k given by Eq.(2.21) with @a=1. Some of the material dis-
cussed below can be found in LAD, but since there the
vacuum permeabilities were set equal to 1, we briefly reca-
Sincep; =1k is the electron momentunp,,,=7%k the pho- pitulate a few matters. Our startin_g observation is that due to
ton momentum, and the initial and final electron energies aréhe skew-symmetric structure &, its square blocks out,

Ein=hColKE+(Mey /)22 Equ=Hcolk3+ (mey/f)?]H2,

whereasE,=%Cok is the photon energy, these relations ex- K2= ( He O )

press the conservation of the momentum components or- 0 Hn

thogonal to theX; axis and the energy. Finallyg;(Xs) is 4.7
the mode function introduced in E(R.29.

We make the following remarks. H.— cOOHoc(X) f dowo(xw):--

(a) Energy is conserved in the photon creation process. ¢
The absorption mechanism affects the created photons only
when propagating through the medium and it enters the forHerec(x)=[sl(x),uo]*1’2 and, withU the unit 3x 3 matrix,
malism through the mode functiors; . Ho=p?U—pp=— 42U+ ,d, . Setting

(b) Since transition radiation is created only in space re- 0 X X
gions with steep gradients in the permeability, its production 1 {u
can be optimized by keeping absorptive layers thin, subject ij:_( "') (4.2)
to coherence requirements. \/E Vi

wo(X,w) w?
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and noting that

K2ij = kZCngJ‘ , (43)
we have
Heukj = kzcgukj , Hka]' = kZCSij . (44)
The functionsuy; andu’,
(2m) ¥, explik-x)
Ui (x) = ( 0 , (4.5

are related by the wave operatdardiffers from but is related
to the one introduced in Sec) Il

Q=lim exp(iHgt)exp —iHt)

t—o0

=1+i IimJ dtexp(— ot)
0

5—0
X exp(iHet)V exp( —iHOt), (4.6
ie.,
ukj:Qu(k(j))
=ud+ilim f dtexp(— st)exp(iHet)V
6—-0 J0
xexp(—iHOtuY
=u@+ (22— He) " vu(?, (4.7)
wherez?=k?c3—i 6 in the limit 5,0 and
2
coHp O
He=H©+V, Hg°>=< o 2). 4.9
0 w

In our expressions only the first componeny; is needed.

Taking the projection upon the first component of the right

hand side of Eq(4.7) and using the Feshbach formulsee

LAD), we then arrive at the Lippmann-Schwinger equation

U= UV +[ 22— Hei((22)] West( 22 ul?

=[2"=He1(2%)]"[2°— cgHo]u”, 4.9
where we dropped the subscripit for brevity and
Hei1(2%) =cHoc— 2°x(2),
Veii(2%) = cHoc — ciHo— 2°X(2), (4.10

. © 810
X(z)zfo dtexp(izt)x(t), z=(k?c3—i8)— —kcq.

Multiplying Eq. (4.9 by 22— He1(z?) and in the limits| 0
we obtain the eigenvalue equation

[K2c5—Herr(k>c§—i0)Juy;=0. (4.11)
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B. The layered case

It is convenient to set

2=7%C2, P=K*—i68, (=—k+i8. (412

Then

2 -1 2

~ ,C |z - clz
311/2u1=811/20_0[;(1+X(Z))—Ho] CT,(?_HO)u(lO)

0

€1

1/2
=[§Ze<z>—Ho]—1(8—o) (P~Hou®, (413
where
1, vacuum
e(x,0)= 1+ xstadX),  Nonabsorptive regions

absorptive regions.

(4.19

We now specialize to the layered case;=c¢4(X3), x
=x(X3,1). Then, setting" = &,

1+ x(x,Co),

e1 MUy (X) = expli ke X) @y (X3),

-1/
€0

(4.195

Ui () = expli - x) 6l (xa),
(%) = (27) 325 M2explikxs),

where ¢ is the same function as we encountered before.
Again dropping subscripts we obtain

€1

1/2
¢=[§28(§)—H0(K)]_1(8—) [£2=Ho(#)1¢

0

=[£%e({) —Ho(k)] 3 —Ho(w)]{ 1+[ 2

12
- Ho(")]_l[(i—;) _1}[52_ Ho(K)]] ¢,

with
Ho(#) =Ho(x,p3)
= (k2 +p3)U— (Kt p3es) (K+ Pses)
= (k?+p3)A(x,P3). (4.16
The term

1/2
[52—H0<K)]1[(2—;) _1}[§2_H0(K)]¢’(0)

£, 1/2
= lim[k?>—io— HO(K)]_:LH—) —1}(—i5)¢(°)
60 €0

vanishes. This follows from the fact that{/e,)*?—1 van-
ishes forx; outside the medium and that the Green’s func-
tion associated witfiZ>—Hqy(x)] ™! is given by
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(xsl[gz—Ho(K)]‘1|y3>=k‘25(x3—y3) encounter in_the Iaye_red case, it .is convenien_t to use the
transfer matrix formalism. It supplies the solutions of Eq.
(4.20 up to normalization constants. The latter are then fixed
by the behavior ofp for large x5 which follows from Egs.

) (4.17 and(4.18. Let us choose a coordinate frame such that
X exp(—i|ksl[xs—Yal). the origin is inside the medium ard=[x_ ,x, ] is the inter-

(4.17 val consisting ofx; inside the medium andl in the X,-X;
plane, sok= ke, andn;=e;. In the following x=x5, p=

i :
-‘rmA(K,_Ia )

X3

Hence —iaxz, anzds:s(x,g). At this pozint we note thalal-zHo(K)2
_ =(k%+p?)ey, leading to e;-[{2e—Ho(k)] 1=[%c—«
Pk =[¢%e(0)—Ho(w)] {2~ HO(")]“’(k(J‘)) —p?le andlEqs(4.18) and(Alf.ZQ reducoe to the scalar equa-
= O+ 2~ Ho(10)] T, (.18 tions[¢f”=ey ¢f=(2m) " explksx)]
where theT matrix T(¢) is given by e1= {0+ (K3—i5-p?) (e,
(4.21
T(O)=V(O)+V()[LPe({)—H “hv(g), ,
(D =V(D+V(D[ () —Ho(k)] V() (D =V(D) V(D (i pDN(D),
V() =1-2(0)], (4.19
and Eq.(4.11) now takes the form and
[K?&(—k) = Ho(#) 1y =0. (4.20 [k2e — k2—p?]e,=0. (4.22

C. The transfer matrix method Thus ¢, corresponds withp; and ¢y, with the set{¢;

In dealing with one-dimensional second order differential=¢;- ¢x,,j=2,3}. With u=|ks| and noting thatV(xs,{)
equations with piecewise constant coefficients such as weanishes outsidg, we have

i _ .
¢lxs) = xs) + 5 Al —17,) Ldysexrx—wlx3—y3|><y3|Tlsa<°>>

[ .
@ O(x3)+ EA(K,_M)deY3eXF{_'M(Xs_Y3)]<Y3|T|¢(O)>: X3> X4

| |
O+ 5w LdysexmM(Xs_ys)]<)’3|T|¢(0)>y Xg<X.

\

[ © N : )

= ) (4.23
0 oyl i 0 <
¢©(X3)+ m EA(K,M)EXD(|MX3)<—M|T|¢ ) Xe<X_.
\
|

Expanding, ¢k2=2j3:2go]-ej , we obtain upon substitution 0 «k NK’e—k?)

into Eq. (4.20 and equating coefficients A(x)= ce 0 , (4.29
(K22 —p?) @+ kpe3=0, [k*& — k*]@3+ kP, =0. with the solution
(4.29

f(x)=U(x,x"Hf(x"), (4.26

Hencep?e,=— px~ 1(k%s — k?) @5 and substitution into the
second equation above results p@ o5+ ke p,=0, SO we _ o
end up with a coupled set of first order equations ggr;, ~ and where théransfer matrixU(x,x’) satisfies
which can be written as

AU, X" )= —1AX)U(x,x"),
@2(X) ) (4.27)

)= =TARIT0, 1) = £@3(X) Ux,x)=1, U, Xx)UX",x")=U(x,x").
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Note that even ifA(x) has discontinuitiesl(x,x’) is con-  where V(x,x’) satisfies Eq.(4.25 with A(x) replaced by
tinuous in both arguments. In the layered case, whéxel) B(x) and with corresponding further developments, resulting
is constant over each layer, we have,xXgr x,, andx, inthe in

same layer,
g(x_)=(2m)  ¥kgexplikax,)[a-V(x, ,x_)-b] b,
U(Xq,Xp)= —iA - . 4.2
(X1,X2) =exH —1A(Xo) (X1 —X2)] (4.28 ax) = (27) Fgexplikox.) 4.3
Now, for x>x,>x_>x’,
X[a-V(x; ,x_)-b] V(x, ,x_)-b
f(X)=U(X, X )U(X; ,Xx_)U(x_ ,x"Hf(x"), (4.29

for k3>0, whereas fok;<0

whereU(x, ,x_) consists of the product of a finite number

_ e , g(x,)=(2m) ¥%kgexpiksx_)[a-V(x_,x,)-b] b,
of known matrices, each pertaining to a given layer. Next we

note that outside the mediurhsatisfies the free equations of 9(x_) = (2m) " kzexp(iksx_ ) (4.36
motion
X[a-V(x_,x4)-b] V(x_ ,x,)-b.
[ A ), e VO ) DEVOC X
(x)= exg —iAg(x—x_)f(x_), x<x_, Herea andb are given by
(4.30
_ k 1
0 « K2 8]
Ao=( 3), a 1), b (ka)' (4.3
k 0

but also has the asymptotic behavior given by EH20.
This fixesf(x..) according to

f(x_)=(2m)  J%expiksx,)

X sin 29[ g - U(x, ,x_)-n,] " n,,
(4.30)
f(x,)=(2m) ¥Z%expiksx. )

X sin 29[ - U(X, ,x_)-ny] TU(X, ,X_)-ny,
for k3>0, whereas fok;<0

f(x,)=(2m) Zexpiksx_)

X sin 29[ g - U(X, ,x_)-ny] " n,,
(4.32
f(x_)=(2m) Zexpiksx_)

X sin 29[ g - U(X, ,x_)-ny] TU(X, ,x_)-n,.

Here 1 is the angle betweek and the positiveXs axis, so
.= (0,sin,cosY) and n,=(0,cosd,—sin), wherease,,
=(0,sin¥,—cos?). Now f(x) and henceap,,(x) can be ob-
tained for any othek from Eq. (4.24).

For ¢, we have

®1(X)
—idyxa(X)

9x9(x) = —1B(X)g(x), Q(X)=(

0 -1
B(X):(Kz—kzs 0 )' 433

SO

g(x)=V(x,x")g(x"), (4.34

In actual situations the dielectrics consist of two types of
layers which alternate, so layers 1,3,5.,2N—1 have the
same structure, as have layers 2,4,6 ,2N. Then
U(x, ,x_) andV(x, ,x_) become powers of two-layer ma-
trices, whereas an additional single layer matrix is needed if
the total number of layers is odd. If the permeability is
changing graduallyJ(x,x") and V(x,x") can still be ob-
tained by means of a direct numerical integration of Eq.

(4.29.

V. DISCUSSION

In this section only situations involving normally incident
electrons will be considered. Thew=ve; in Eq. (2.32
which now becomes

2

e
@kj:?|<_kcoes|¢kj>|2, (5.1

¢,;dk being the radiated energy per electron with polariza-
tion j and wave number betwednandk + dk.

A. Comparison with results obtained by the coherent
summation procedure

For brevity we refer to the coherent summation method as
CSM and to the present approach as S{8dattering theo-
retical methogl The validity of CSM involves the following:

(a) The electron velocity is constar(b) There is no genera-
tion of CR. (c) A stack consisting of an odd number of al-
ternating layers, 1,2 .. ,2N—1 is considered. Layers 0 and
2N refer to the vacuum at both sides of the sta@k. The
radiation generated at the internal interfadgist1 andi

+1, i+2 has equal amplitude and opposite phasg.The
radiation generated at the external interfaces 0,1 aNd 2
—1, 2N is taken equal to that of 2,3 and 1,2, respectivély.
The radiation emerging from the last interface is obtained by
coherently summing up the contributions from the individual
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interfaces(g) The dielectric is nonabsorptivéh) A decrease 14 ' ' ' ' ' ' ' ' '
in the electron beam intensity inside the medium due to scat: - &
tering can be discounted. 12r 1
Assumptiongd) and(f) require|e;, 1 — €| to be small. If
not, reflection cannot be neglected and the summation pro= 1+ '\ .
cedure is not justified. Conditiaf) is acceptable if the num-
ber of layers is sufficiently largéBut then the contribution
from the boundary interfaces can be put equal to zero as
well.) As mentioned earlier, restriction®) and (h) have
been removed to some extent by Kaplenal. [2]. If we
compare the above list with our results in Secs. Il and I, we
see that the STM only requirdh), the tradeoff being that
now the Helmholtz eigenfunctions must be calculated, which
is a straightforward matter. However,(#)—(g) are met, then o2 '\ ]
the results of both approaches are comparable. To verify this .
we consider two multilayer structure&andB, with incident o . P S ———— - . —
electron beams of moderate and high energy, respectively. EMISSION ANGLE 6 [degrees]
N.Ote that m.ultilayer structures can be eXpeCted. to. boogt TR FIG. 1. Combined TR and CR yield at wavelength 1.59 nm in
yields at a fixed wavelength only if they are optimized, i.e.

. = 'photons/bandwidth sr electron versus emission addier 207 al-
the layer thicknesses are such that constructive mterferent%mating layers of barium and beryllium, each 66.45 nm thick, be-

of radiation, produced at subsequent interfaces, takes p|aC|ﬁg bombarded by 45 MeV normally incident electrons.
This involves both the electron speed and the radiation ve-

locity in a layer. Structuré\ consists of 207 alternating lay- Si &h | o ted th

ers of barium and beryllium, each layer having a width of glé:&stryc;u; | _asda ar9b¢f8‘*.1_8‘| It 'S.thpecht at
66.45 nm. Barium has an absorption edge at a wavelength 6‘?8 A might fail In describing it, even wit (_)Ut emis-
1.59 nm which causes structuteto produce intense TR and sion. This tgrns out to be only partially correct; even for this
CR in the vicinity of this wavelength, with an electron beam structure with Iargdsi,l—'sﬂ the CSM. appears to be rea-
of sufficient energysee[2]). We analyze the radiation emit- songbly capable O.f describing the radiation yield as long as
ted from structureA at this wavelength, for whicheg, CRis absent. In Fig2 , where an eleciron beam of 1.5 MeV
—1.0013+0.00021 and spe=0.9988+0.000059 (|sg, 'S eMPloyed(which does not generate GRhe TR yields

— £ =0.0024). Structur® consists of 101 alternating lay- predicted by the CSM and STM are plotted against emission

ers of silicon and molybdenum, each with thickness 65 nm@2ngle . Photon absorption has been included. We see that

For structureB we focus on the wavelength 12.44 nm, for the CSM and STM agree qualitatively, but there are some

which silicon has an absorption edgss= 1.043+0.0036 noteworthy differences, especially in the minor peaks. For an
and ey, =0.88+0.0099 (|eg— &yo =0 1|6) ' ' electron beam of 15 MeV a more pronounced discrepancy
0=0. . i o .16).

appears, as can be seen in Fig. 3. The STM predicts emission

(ip the 0°<6#<10° range, while the CSM does not. The
ause of the discrepancy is not so much the generation of CR
hat takes place for 15 MeV electrons, but rather the fact that

lectron sr BW,
o
@
T
I

YIELD [photons
(=]
[
T

=3
=
T

StructureA has a smalle;_;—¢;| and is therefore ex-
pected to be accurately described by the CSM, provide
there is no emission of CR. For an electron beam of 4.
MeV, for which no CR is generated, the CSM results agre
very well with the corresponding STM ones. Both methods
predict production of TR in a cone with axis aloXg with a 008 ' ' ' ' ' ' ' i '

. . . STM
maximum at the angl®@= 6,,,,=6.66° and a narrow distri- CSM
bution around this value. Disregarding photon absorption, *”'[
the CSM gives a 1% higher intensity than the STMéat ooel
= Omax, Which number increases to 4.3% if absorption is =
taken into accounthere the augmented CSM, put forward in L
[2], was employed This is not too bad in view of the fact £
that absorption reduces the total photon yield by a factor of§0_04_
14. When structurd is exposed to a more energetic electron ;
beam of 45 MeV, then the TR yield will be supplemented by &oos}
CR emission generated in the barium layers. This emissiorf
of CR is not correctly described by the CSM. In Fig. 1 the ooz-
predicted radiation yields for the CSM and STM are plotted
against the emission angle taking photon absorption into  oo1r
account. We see that the CSM and STM show the same pea
at #=38.85° but the CSM fails to describe the yield in the % 5 10 B 0 25 w0 35 0 a5 50
0°< #<3° range correctly. This is to be expected since CR EMISSIONANGLE ® [degroes]
iS em|tted at¥=1.93° Wh|Ch diStOl‘tS the CSM resultS in the FIG. 2. TR y|e|d at Wa\/e|ength 12.44 nm in photons/BW Sr
0°< #<3° range but leaves the peakét 8.85° unaltered. electron versus emission anglefor 101 alternating layers of sili-
Without photon absorption the CSM even predicts an infinitecon and molybdenum, each 65 nm thick, being bombarded by 1.5
yield at §=1.93°. MeV normally incident electrons.

BW

cl
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0.14
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0.1

YIELD [photons/{electron sr BW)]
g
@

0.04
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L
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EMISSION ANGLE 6 [degrees]

FIG. 3. Combined TR and CR yield at wavelength 12.44 nm i
photons/BW sr electron versus emission amgjfer 101 alternating
layers of silicon and molybdenum, each 65 nm thick, being bom

barded by 15 MeV normally incident electrons.
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electron energies smaller than the observed photon energy,
whereas the CSM vyield gradually decreases with decreasing
electron energy.

In a separate publicatiofll3], we shall present detailed
numerical results about TR and CR yields for a variety of
situations.

B. Further theoretical considerations

The approach we have followed gives a considerable im-
provement over the coherent summation procedure and is
likely to be optimal within the framework of the linear phe-
nomenological Maxwell's equatio®E). The latter can be
looked upon as a type of mean field approximation to the
underlying microscopic physics. As such it does not include
processes such as electron scattering from the individual par-
ticles (atoms or iong constituting the material, and accord-
ingly the associated bremsstrahlung is also missing. Attenu-
ation of the electron beam can be included in much the same

rlWay as has been done in the CSM, as we have done in some

of our calculationg12]. If we use the formalism of Sec. Il,

‘where the current is prescribed, we can try to include elec-

tron scattering by specifying the path of the electron differ-
ently. In fact, an individual electron will perform a lossy

structureB is optimized for a 1.5 MeV beam. In fact, the random walk(it can lose energy at each encounter with one

CSM turns out to be particularly good in describing peaks inof the particles in the materjal This makes the current a
the radiation distribution that arise from positive interfer- random quantity and an additional averaging is required to
ence, as in an optimized structure. The peak=afl.89° that  arrive at the final result. Alternatively, a formulation in terms
CSM fails to predict corresponds to the TR emitted at the lasef a transport equation can be contemplated. The basic idea
interface alone; it does not fullfil a coherence condition. IS then to add an additional teréy which accounts for the
The above examples show that the CSM suffices for delnteraction of the electron with the individual atoms, to the
scribing TR generated in an optimized multilayer structureHamiltonian
that has a moderate; _,—&;|, provided there is no genera-
tion of CR. If |e;_;—&;| is large the CSM can be slightly
inaccurate, as seen in Fig. 2. If CR emission takes place ahat is at the basis of our results presented in Sec. IIl. In its
the multilayer structure is not optimized then more serioussimplest form, disregarding inelastic processes, such as exci-
discrepancies are found, as seen in Figs. 1 and 3. Finally, wiation of the atoms and energy-momentum transéecon-

H=Hgjectront Htielat Hint (5.2

give a comparison of the CSM and quantum STM predic-Sists of a sum of potentials,
tions for TR produced by a single slab in Fig. 4. It is seen

that the quantum STM result correctly becomes zero for

STM
--- CsM

YIELD [photons/(electron sr BW)]
3
T

10% 107 10°

ELECTRON ENERGY [keV]

10

1

V=; V(x—X;), (5.3
whereV; is the potential between the electron and itie
atom or ion in the materiak being the electron coordinate
andx; the position of thgth atom. Depending on the type of
material,x; is a lattice point of a crystal or randomly distrib-
uted in an amorphous material. Note that without the cou-
pling with the field we are dealing with the quantum Lorentz
gas. The next step would be to make a binary collision ex-
pansion of thel' matrix associated witl. The leading term

in this expansion describes the situation where the individual
scattering events are independe(Boltzmann equation
level). If this is the case, i.e., higher order terms can be
dropped, the resulting expression for radiation production
not only accounts for electron beam attenuation but also de-
scribes the radiation produced by the deflected electrons
(which we expect to be of minor importancélowever, this
program is quite difficult to implement; either a density op-
erator approach or the Bethe-Salpeter equation is needed, a
further complication being the breaking of the translation

FIG. 4. TR yield at wavelength 12.44 nm and at optimized invariance in theX; andX, directions. For randomly distrib-
emission angle in photons/BW sr electron versus electron energyted atoms it can be restored by averaging over the positions
for a single 10 um thick silicon slab being bombarded by normally X; but that can only be justified if the underlying stochastic

incident electrons.

process is ergodic.
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